Use of Density-based Cluster Analysis and Classification Techniques for Traffic Congestion Prediction and Visualisation
نویسندگان
چکیده
The field of Intelligent Transportation Systems has lately raised increasing interest due to it high socio-economic impact. This work aims on developing efficient techniques for traffic congestion prediction and visualisation. We have designed a simple, yet effective and scalable model to handle sparse data from GPS observations and reduce the problem of congestion prediction to a binary classification problem (jam, non-jam). An attempt to generalise the problem is performed by exploring the impact of discriminative versus generative classifiers when employed to produce results in a 30-minute interval ahead of present time. In addition, we present a novel congestion prediction algorithm based on using correlation metrics to improve feature selection. Concerning the visualisation of traffic jams, we present a traffic jam visualisation approach based on cluster analysis that identifies dense congestion areas.
منابع مشابه
Predicting the Next State of Traffic by Data Mining Classification Techniques
Traffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear patterns, these systems ...
متن کاملImplementation of Random Forest Algorithm in Order to Use Big Data to Improve Real-Time Traffic Monitoring and Safety
Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance efficiency and traffic safety are considered as an im-portant element in measuring the pe...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملA neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country
Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...
متن کاملTraffic congestion control using Smartphone sensors based on IoT Technology
Traffic congestion in road networks is one of the main issues to be addressed, also vehicle traffic congestion and monitoring has become one of the critical issues in road transport. With the help of Intelligent Transportation System (ITS), current information of traffic can be used by control room to improve the traffic efficiency. The suggested system utilize technologies for real-time collect...
متن کامل